Standardisation of Factor VIII Inhibitor Assays

National Institute for Biological Standards and Control, UK.

A Comparison of the Bethesda and New Oxford Methods of Factor VIII Antibody Assay

Austen, Lechner, Rizza and Rhymes. Thromb Haemost 1982; 47: 72-75.

Samples: Plasma from 8 patients with inhibitors

Participants: 11 Laboratories

Assays: Participants carried out assays on each

sample in triplicate, by both the Bethesda

and the New Oxford methods

Inter-laboratory Variability CVs of Mean of 3 Results

Sample		
	52%	85%
	66%	101%
	62%	60%
	520/0	128%
	420/0	47%
	38%	90%
	tinta .	Miss
	78%	66%

Intra-laboratory Variability Range of CVs

Method		
	0.0	37.0
		65.0

UK-NEQAS Study on Factor VIII:C Inhibitor Assay (Survey 126) 2001

F. E. Preston and T.A.L Woods.

Unpublished Data (Personal Communication)

Samples:

(UK centres only) - Plasma from a haemophiliac with inhibitor which also cross-reacted with porcine factor VIII:C.

(international laboratories) - Plasma from a patient with an acquired inhibitor.

Participants: 60 UK Labs; 18 International Labs.

Assays: Participants carried single assays on each sample, by the Bethesda Method (1 Lab - New Oxford method)

Detection Limit of FVIII:C Inhibitor Assays

UK Laboratories

Lowest limit of detection:

B.U.	0	0.05	0.1	0.2	0.25	0.3	0.4	0.5	0.6	1.0
N	4		4	5		5	10		1	8

International Laboratories

Lowest limit of detection:

B.U.	0	0.01	0.05	0.1	0.2	0.4	0.5	1.0
N	3	1	1.	2	1	2		2

Results 1- Sample 01/10 (Human FVIII: C Inhibitor Assay)

60
2a 18
47.3
0.6
8.0

Results 2 - Sample 01/10 (Porcine FVIII: C Inhibitor Assay)

	18
	The state of the s
	0.74
- 44 	60.5
	0.0
	Just to 1

Results 3 - Sample 01/10A (Human FVIII: C Inhibitor Assay)

18	60
1.15	1.40
0.94	1.61
68.4	86.0
0.41	0.4
4.0	9.0

Acquired Inhibitor

A Controlled Study to Compare Bethesda Factor VIII Inhibitor Assays NIBSC Wet Workshop

T.W. Barrowcliffe, I.R. Peake and A.D. Curtis. Unpublished Study 1985

Samples: Haemophilic plasma samples with and without inhibitors

Participants: 16 Participants (UK Haemophilia Centres)

Assays: Participants carried out replicate assays repeatedly on each sample, in the presence and absence of inhibitor, by the Bethesda method

Summary of Results of NIBSC Wet Workshop

- CVs for samples without Inhibitor: 15-26%
- CVs for samples with Inhibitor: 53-80%
- CVs for samples with Inhibitor when incubation stage standardised: 33-43%
- CVs for samples with Inhibitor when incubation + FVIII assay stages standardised: 14-20%
- Intra-operator CVs < Inter-operator CVs

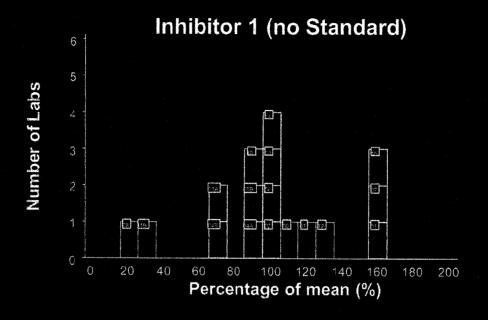
International Collaborative Study to Standardise anti-FVIII Inhibitor Assays

S Raut, D Sands, T Barrowcliffe, NIBSC, UK. S Kitchen, FE Preston Sheffield, UK.

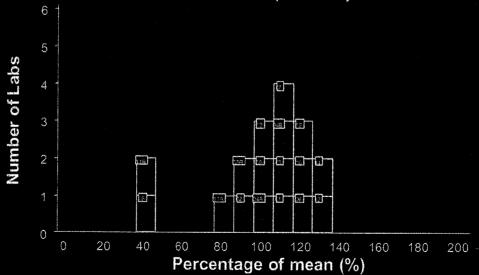
Study Summary

- 2 samples containing human anti-FVIII monoclonals and 1 sample containing rabbit anti-FVIII polyclonal
- 3 samples from haemophiliacs with inhibitor developed secondary to treatment
- Assayed in multi centre study 15 centres, 17 sets of assay data using local Bethesda methods (75% - Nijmegen modification)
- Variability of inhibitor assays was assessed
- Could a reference material assist in standardisation of this assay?

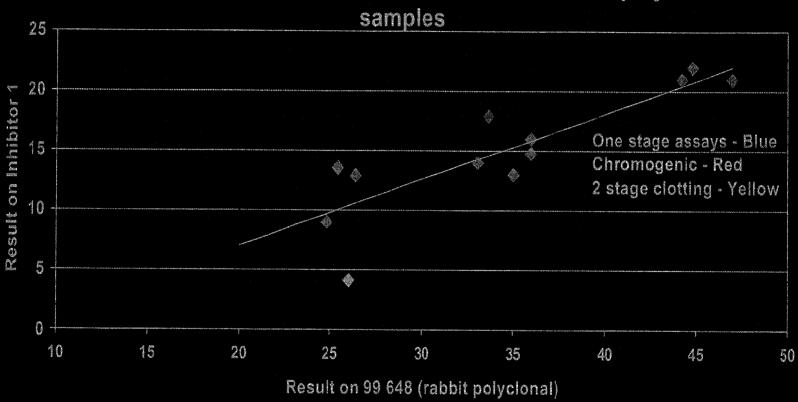
Inhibitor results - n = 17


	Inhibitor 1	Inhibitor 2	Inhibitor 3
Mean (Bu/ml)	13.4		13.0
Range (Bu/ml)	4.1 - 22.0	2.1 - 14.3	6.1 17.9
CV %	39.5	52.4	33.7

Inhibitor results – n = 17


	99/648 (rPAb)	99/652 (hMAb 1)	99/654 (hMAb 2)
Mean (Bu/ml)		32.4	35.1
Range (Bu/ml)	23 cm 2 mg	19 - 45	20 - 54.8
CV %	26.2	28.9	30.1

One stage (n=11) & Chromogenic assay (n = 5)


	1	2	3	rPAb	hMAb 1	hMAb 2
One - stage	15.9	5.6	14.8	35.2	32.3	36.0
Chromogenic	9.7	4.4	10.4	24.6	32.7	35.7
Difference		27%			1%	1%

Correlation between results on Inhibitor 1 and rabbit polyclonal

Relationship between results on the patient samples and results on the antibody preparations

Correlation coefficient for patient samples against:

- MAb 1 (99/652) 0.08, 0.21, 0.15 ns
- MAb 2 (99/654) 0.57 (p<0.01), 0.27 and 0.39
- PAb (99/648) 0.86, 0.60, 0.59 (all p< 0.01)

Antibody preparations as reference/standard - effect on CVs

			permitti kan kan sarah katan 2000 menancah kan abuma dan kembanyak dan kembangan bermalah dan dan dan dan dan
39.5 %	26.7	47.2	37.3
52.4 %	33.9	47	42.1
33.7 %	26.5	38.6	26.1

Conclusions

- High inter- lab variability in inhibitor assays (much greater than assays of FVIII:C)
- Some improvement in CVs between centres using a candidate standard as reference, particularly for the rabbit polyclonal
- Large scale production and fill of reference material(s) with full multi assay, multicentre study?
- If so what levels of Bethesda would be most useful?

Possible Advantages of a Reference Preparation

- To reduce inter-lab CVs.
- To have a useful QC material for labs in clinical studies.
- As a common sample in evaluation of new methodologies.

Feedback

• Proposal:

Seek out feedback from participants (questionnaire from NIBSC?) before embarking on a larger study.

Points to Consider (Overall) 1

- High variability
 - directly due to presence of inhibitor
- A need for an Inhibitor Standard
 - Intra-Lab CVs < Inter-Lab CVs
 - Better CVs with Standard

Points to Consider (Overall) 2

- Chromogenic CVs < One-stage CVs (a matrix dilution effect?) May need to modify assessment of residual FVIII:C activity:
 - (a) High dilution
 - (b) Reduced or standardised incubation time
- Time for different FVIII:C assays to complete vary (will affect time for inhibitor to neutralise FVIII)

Points to Consider (Overall) 3

- Standardise the assays:
 - Ab dilutions (critical)

- FVIII deficient plasma
- Reagents (phospholipid, activator)
- Order of addition of reagents mixture (assay design)
- Activation time

Acknowledgements

- Dr Jorgen Ingerslev, Aarhus, Denmark preparation of rabbit polyclonal antibody to human FVIII
- Dr Marc Jacquemin, Leuven, Belgium preparation of the monclonals from immortalised Haem A patients B lymphocytes.

Participants

- Dr Armelle, France
- Dr S Raut/ Dr Barrowcliffe NIBSC, UK
- Prof Budde, Germany
- Dr Byrne, USA
- Ms Duncan/Dr Lloyd, Australia
- Prof Hillarp, Sweden
- Prof Ingerslev, Denmark
- Dr Kitchen/Prof Preston, UK
- Dr Ruth Laub, Belgium

- Dr Kotitschke, Germany
- Prof Oswaldson/Ms Frank Sweden
- Ms Riddell/Prof Lee, UK
- Dr Rosen, Sweden
- Dr Rothschild, France
- Dr Sahud, USA
- Dr Van Mourik, Netherlands
- Dr Verbruggen, Netherlands
- Prof Yoshioka, Japan